BOOTSTRAP
the world tor your
TESTS

Edicién presencial y virtual




Before swim in the deep sea..

0. Not a Holy Grail

1. Eventually general purpose solution BUT stick to the
particular technolgy and [maybe (application
architecture)]

2. Keep your mind critical

Pay attention and Enjoy it!




Mativation

The Art of Code, Dylan Beattie, GOTO 2020. Retrieved 2022, from
https://www.youtube.com/watch?v=yDB3wbkfEel



“System under test (SUT) refers to a
system that is being tested for correct
operation.”

Source Wikipedia. Retrieved 2022, from https://en.wikipedia.org/wiki/System_under_test



Challenges



Challenges

1. Consistent environment/SUT state->"golden state"

2. Deterministic finite-state

3. Programmatically way to run-up
4. Resonable resource usage and time execution



more challenges..

1. Declarative way of SUT assembling
2. Dependency and dependency ordering resolve

3. Order of execution
4. ...



| et's stop for a
whilel



The same old story..

"dependency hell", execution modes {in memory,
dummy,...}, configurations...

run-up and keeping correct state in a not trivial
environment such a microservices...

=>

all boil down to the difficulties of managing state



Proposal

Encapsulate as much as possible the state of the environment!



Solution

Dockerize it




Solution explanation

e An application ~ a single docker image

e Single point of true

e Reference point

e Speakingin terms of "Unit of change"

e Clear borderlines and responsiblity

e Perfect suite for microservice base architecture



| et's stop againl



Little by Little
putting details!



Execution Unit explentation

Speaking about computer systems, we all, have the same sort of issues/challenges to sort
out.

1. Unit without any dependencies - only raw data input

2. Dependencies in between units - state dependencies

N



Study, study and
one more time
study



systemd

e Offers simple declarative schema for definition,
execution order and process magnage.

2 [Unit]
3 Description=Kafka

[Unit]

Description=App
Wants=kafka.target
[Service]
ExecStart=java -jar ...

1
5
6

1 systemctl start app.target




Dockerize it

Classic usage |




Dockerize it

Classic usage |l



Conclusions |

1. Docker engine and Dockerfile as a great technology
candidate

> RUN mkdir -p /usr/ourApp

3 COPY _ # binary, run script, *conf
4 ENTRYPOINT["sh", " .sh"]




2. docker-compose CLI has a great DSL (depends_on,
networks)

context: .
dockerfile: DockerfileApp
depends on:
kafka
redis

ports:

XY
networks:
default:
aliases:
app
networks:
default:
driver: bridge

Docker compose manage links easier. Treat container as a single entity.



